Vito - A Generic Agent for Multi-physics Model Personalization: Application to Heart Modeling
نویسندگان
چکیده
Precise estimation of computational physiological model parameters from patient data is one of the main hurdles towards their clinical applicability. Designing robust estimation algorithms is often a tedious and model-specific process. We propose to use, for the first time to our knowledge, artificial intelligence (AI) concepts to learn how to personalize a computational model, inspired by how an expert manually personalizes. We reformulate the parameter estimation problem in terms of Markov decision process and reinforcement learning. In an off-line phase, the artificial agent, called Vito, automatically learns a representative state-action-state model through data-driven exploration of the computational model under consideration. In other words, Vito learns how the model behaves under change of parameters and how to personalize it. Vito then controls the on-line personalization by exploiting its automatically derived action policy. Because the algorithm is model-independent, personalizing a completely new model would require only adjusting some simple parameters of the agent and defining the observations to match, without the full knowledge of the model itself. Vito was evaluated on two challenging problems: the inverse problem of cardiac electrophysiology and the personalization of a lumped-parameter whole-body circulation model. Obtained results suggested that Vito could achieve equivalent goodness of fit than standard methods, while being more robust (up to 25% higher success rates) and with faster (up to three times) convergence rate. Our AI approach could thus make model personalization algorithms generalizable and self-adaptable to any patient, like a human operator.
منابع مشابه
A self-taught artificial agent for multi-physics computational model personalization
Personalization is the process of fitting a model to patient data, a critical step towards application of multi-physics computational models in clinical practice. Designing robust personalization algorithms is often a tedious, time-consuming, model- and data-specific process. We propose to use artificial intelligence concepts to learn this task, inspired by how human experts manually perform it...
متن کاملAutomatic Generation of a Multi Agent System for Crisis Management by a Model Driven Approach
Considering the increasing occurrences of unexpected events and the need for pre-crisis planning in order to reduce risks and losses, modeling instant response environments is needed more than ever. Modeling may lead to more careful planning for crisis-response operations, such as team formation, task assignment, and doing the task by teams. A common challenge in this way is that the model shou...
متن کاملA new approach of designing Multi-Agent Systems
Agent technology is a software paradigm that permits to implement large and complex distributed applications [1]. In order to assist analyzing, conception and development or implementation phases of multi-agent systems, we’ve tried to present a practical application of a generic and scalable method of a MAS with a component-oriented architecture and agentbased approach that allows MDA to genera...
متن کاملModeling Lateral Communication in Holonic Multi Agent Systems
Agents, in a multi agent system, communicate with each other through the process of exchanging messages which is called dialogue. Multi agent organization is generally used to optimize agents’ communications. Holonic organization demonstrates a self-similar recursive and hierarchical structure in which each holon may include some other holons. In a holonic system, lateral communication occurs b...
متن کاملStatistical physics modeling of equilibrium adsorption of cadmium ions onto activated carbon, chitosan and chitosan/activated carbon composite
The adsorption ability of activated carbon, chitosan, and chitosan/activated carbon composite for cadmium separation from aqueous solution was analyzed via statistical physical modeling. The equilibrium data were analyzed by Langmuir, Hill, double layer model, and the multi-layer model with saturation isotherm models. Results showed that the multi-layer model with saturation could well describe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015